If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905t^2-5t=0
a = 4.905; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·4.905·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*4.905}=\frac{0}{9.81} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*4.905}=\frac{10}{9.81} =1+0.19/9.81 $
| 7^(2x)Z=14 | | 3x-60=1x | | 3(4x-5)=7x+10 | | 13x-33=7x-15 | | 3(4x-5)=7x | | (5x+5)=3x+25 | | -2v-4v=17 | | 10(x+)=6x | | 2x×6x+2x=90 | | -2.3(x—1.2)=-9.66 | | 2x+36=18x-28 | | 9x^2-2x+12=10+2x | | 25=-2z+4z | | 6x=5x+13 | | 97+x+64=180 | | 2(a+4)=2a | | x+4+8=24 | | 5x+4,7x-2=134 | | 2+7(1-4s)=-27 | | (5x+4)(7x-2)=134 | | 2h+3=h-1 | | 2y+1=y$ | | 134=(5x+4)(7x-2) | | 2y=y+4+1 | | 53-8m=4m-7 | | 9a-2-8a=-27 | | b/10.5=157.5 | | u-6=42 | | 124=(2x+4) | | 4x+3=6x=5 | | 6x+42=96 | | –5x+4=32 |